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Unifying framework for neuronal assembly dynamics
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Starting from single, spiking neurons, we derive a system of coupled differential equations for a description
of the dynamics of pools of extensively many equivalent neurons. Contrary to previous work, the derivation is
exact and takes into account microscopic properties of single neurons, such as axonal delays and refractory
behavior. Simulations show a good quantitative agreement with microscopically modeled pools of spiking
neurons. The agreement holds both in the quasistationary and nonstationary dynamical regimes, including fast
transients and oscillations. The model is compared with other pool models based on differential equations. It
turns out that models of the graded-response category can be understood as a first-order approximation of our
pool dynamics. Furthermore, the present formalism gives rise to a system of equations that can be reduced
straightforwardly so as to gain a description of the pool dynamics to any desired order of approximation.
Finally, we present a stability criterion that is suitable for handling pools of neurons. Due to its exact derivation
from single-neuron dynamics, the present model opens simulation possibilities for studies that rely upon
biologically realistic large-scale networks composed of assemblies of spiking neurons.

PACS numbgs): 87.10+e, 87.18.Sn, 87.18.Bb, 05.45a

[. INTRODUCTION models that fulfill these requirements normally neglect the
spatial structure of the dendritic tree and focus on the spike
What kind of mathematical models should be chosen t@eneration process. Examples are the spike-response model
study and simulate large, biologically realistic neural net-(see, e.g., Refl1]) and the integrate-and-fire type models
works? In the computational-neuroscience literature, one caf$ee, €.g., Refl2]), which constitute a special case of the
find a growing number of models that describe neurons at th&Pike-response model. Typically, a neuron has an internal
single-cell level[1,2] as well as many models that describe State variable and a spike or action potential is released when
the joint activity of groups of equivalent neurofg-g|. Be-  the state variable reaches some threshold from below. After
tween the two modeling levels, only in a few ca@s0,9 releasing the spike, the state variable or the threshold is tem-
has a connection been made. To bridge this gap between ti@rarily modified to account for refractory effects.
microscopic and the assembly level, here we derive a model Alternatively, one could start at a macroscopic level and
for the activity dynamics of a poo' of equiva'ent neurons use models that describe dil’eCtly the behavior of some mac-
starting from a single-cell model. Contrary to previous work0scopic variables of a neuronal pool. The most prominent
on the subject, na priori time averaging is necessary, mak- models of this category are of the assembly-averaged graded-

ing the derivation concise and systematic. response type. Models of this type normally describe dynam-
The model is motivated by the experimental observation
. \
that cortical neurons of the same type that are near to each ) — """"""""""" _ Q
other tend to receive similar inputs. In experiments one often S

I

finds that neurons of the same type that are close to each
other are activated simultaneously, or in a correlated fashion.
In cortical networks, this may be due to reciprocal connec-
tions and common convergent input. In modeling studies it @ e N —
therefore seems sensible to consider all neurons of the same o

type in a small cortical volume as a computational unit of a

neuronal network. We will call this computational unit a . ) o
neuronal “pool” or “assembly.” All pool neurons have to often encountered yvhen dgallng with large-scale blolpglcal neural
be equivalent in the sense that they have the same inpun_etworks. It was originally introduced by Helpb5]. In this paper, _
output connection characteristics and, additionally, the sam eurons belonging 0 the same pool or ass embly are characterized
dynamics parameters. This is explained in detail in Fig. 1 having the same input-output connectivity pattern. Furthermore,

. o " _~all neurons of the same pool have the same paramédtersery
All neurons that constitute a “pool” feel a common synaptic g;ijar concept is that of a “pool’(see Ref.[20], Sec. 1.2.4

input field, but each neuron evolves according to its OWnypich arises in relation to associative networks. It contains the key

internal dynamics. to the pool idea in that a sublattice has been defined implicitly as all
How should we build a model based on these neurongheurons being identical and having the same ifgdutthe figure,

assemblies? We can start at the microscopic level and usiferent types of neurons and connections are characterized by dif-

single spiking neurons to compose the pools of a networkierent texturegwhite neurons are of any typeAccording to the

For large-scale simulations, the single-cell model has to bassembly definitions, only the two neurons in the oval belong to the

numerically efficient and easy to implement. Single-neurorsame pool.

FIG. 1. The notion of a “pool” or “assembly” of neurons is
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ics of the assembly activity through relatively simple differ- section, we will not specify;(t) any further] A solution of
ential equations. system(1) for all A;’s defines a stationary state of the net-

In this paper we will follow a third approach. We start work.
with single spiking neurons and take advantage of the assem- In the assembly-averaged graded-response interpretation,
bly characteristics to derive a differential equation model forthe macroscopic variabl&;(t) designates the pool-averaged
the dynamics of the pool activity. In this way, the model spike density at timé, that is,A;(t) At is the total number of
focuses on the macroscopic parameters of cell assemblies bsfiikes released by neurons of the pbadluring the interval
retains the quantitative behavior and the microscopic param,t+ At]. We will use this interpretation throughout the rest
eters of the neuronal model. of the paper.

With the pool model presented in this paper, large-scale Usually, a dynamics is introduced by choosing equations
simulations with networks that are composed of pools ofthat have as fixpoints the same stationary solutions as system
equivalent neurons become possible. It also allows for th€1). An easy way of achieving this is by adding an exponen-
modeling of complex spatiotemporal activity dynamics thattial relaxation term. In the time-discrete case this returns
is thought to rely upon the properties of spiking neurons.

Coherent activity oscillations found in the visual cortex and Ai(t+AD)=—-A(t)+alhi({AD], 2

other areas of the braiii1-14,16 constitute a well-known
example. Another advantage of the presented model is t
possibility to compare the microscopic parameters that ar
retained by the derivation from single-neuron dynamics with d

data from neurophysiological measurements. In addition, the TaAi(t): —A(t)+alhi({A D], (3
differential equation form of our model allows for a compari-
son with other, more heuristically based pool models that ar

used throughout the neuroscience community. A modified assembly-averaged graded-response model

In the next sections, we proceed as follows. First, WEyas introduced by Wilson and Cowa8]. They derived a
sketch the essentials of some of the commonly encountere@er

fferential equation model for neurons with absolute refrac-
assembly-averaged graded-response models used for t y period of lengthy® using a “time-coarse-graining”
simulation of pool dynamics. We then introduce the single- veraging method Their' final result reads
neuron dynamics that constitutes the basis of our pool mode?. '
In Secs. lll, IV, and V, we present the derivation of the d
differential equation pool model. Consequences for the ap- TaAi(t):_Ai(t)+g[hi({Aj})][1_'yab%i(t)]- (4)
plication of the model follow in Sec. VI. In Sec. VIl we
compare the model with graded-response models and poofsompared with Eq(3), this equation has a slightly modified
modeled by using single spiking neurons of the spike-gynamics near to the saturating activityyd7 Both Eqs.(3)
response and integrate-and-fire types. In Sec. VIIl we shovind (4) will be encountered again in later sections when we

that the model has the same stability and locking charactegiscuss the connection of our pool model to graded-response
istics as pools of spiking neurons. In Sec. IX, we demonypgdels.

strate how finite-size effects can be included into simulations Equations(2) or (3), are, by construction, only suited to
with our pool model. Finally, a summary gives a short over-describe activities near to stationary state of the whole
view of the model. network Similarly, in Eq. (4), time averaging generates a
dynamics that neglects fast, transient, behavior. In many
cases, however, the above models are used to generate oscil-
latory pool activities. For example, it has been postulated
In this section we discuss some standard and enhancehat two reciprocally coupled pools, one composed of exci-
graded-response models that are used throughout the neutatory neurons and the other of inhibitory neurons, could
science community. We indicate some flaws that are inhererdgonstitute a kind of processing unit capable of generating
to them. In later sections they will be compared with ouroscillations. Using Eq(3) and designating the activity of the
pool model. excitatory pool byE;(t) and that of the inhibitory pool by
I;(t), we obtain

h\é{hereAt is the discretization interval, and in the continuous
gase one obtains

fith some suitably chosen relaxation time constant

Il. GRADED-RESPONSE MODELS

A. Standard graded-response models

E_E(t)=—E. EThE({E N {1,
In the standard neural network literature, the simplest T th'(t) Ei(0+gThi(E D],

neuronal models use gain functioggo express the depen- 5

> Ng: )
dence of the “firing rate” or activityA; of some neuronal , d -
entity i, with 1<i<N, upon its synaptic input fielti; (see, L) ==Lt +g[hi{E}{I;PD].

dt

e.g., Ref[3]):

It is plain that such a model can show oscillatory behavior, if
Ar=ghiAD] (D the time constants® and+' and the input field&’ andh| are
suitably chosen; for more details we refer, e.g., to R&fS].
The synaptic input field depends on the set of present and After the derivation of our exact pool dynamics, we will
past activities{A;} of all other neuronal entitieg, 1<]j return to the models presented in this section. We will com-
<N, that contribute to the input of [In the rest of this pare the model of this paper with the assembly-averaged
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Qa Sa=Bri(0 - q O], ™
oc/ ofh) d
. /q(h) \ . &ri(t):a'ai(t)_ri(t)az[hi(t)]_ﬁri(t)v )
O B Q with a synaptic fieldh; that depends on the set of activities

B 1a;} of all other poolsj. Because all neurons participate in

_ _ the process, we have;(t) +a;(t) +r;(t)=1, so that only
FIG. 2. A graded-response model including refractory effects,tWO quantities are independent:

according to Ref[17]. In this model, the neurons of a single pool
can be grouped into three subpopulations: neurons that fired re-

cently (a), neurons that are in a relative refractory stat, @nd —a;(t)=—aa(t)+{1—a(t)—ri(t)} o hi(t)]

neurons that are quiescemf)( Neurons froma decay with a ratex dt

toward the state, and neurons fromn decay with a ratg3 toward +ri (D)o hi(D)] 9)
1 I 1

the stateg. A synaptic fieldh induces field-dependent transitions
from the refractory(r) or the quiescen(n) subpopulation toward the d
firing (a) subpopulation with rates(h) and o,(h), respectively. —ri(t)=aa(t)—r(){B+ o[ hi(H)]}. (10)
With an appropriatea-dependent fieldh, a single recursively dt
coupled pool can generate sustained oscillations.
Neurons that release a spike participate in dhg) sub-

0;:_)opulation for a short time period. Afterwards, they enter the

graded-response models. We will also show how grade . : - .
response models can be incorporated into a broader fram(ragfractory phase, during which the probability of a new spike

work of pool activity dynamics which allows for a compari- rgleasar_l(gi) .d#e to thi.'npuaf'eld;i is low. ,?\ffter a(jlpnger
son of the dynamics parameters with single-neuror{“me period without spiking, the re ract'ory © ects disappear,
parameters. an_d_ the neuron can release a new spike with a greater prob-
ability o5(h))=0o4(h;).

In this model, we have writtem;(t) instead ofA(t),
B. Graded-response models with refractory effects because we are dealing with the total number of spikes re-
leased during a certain period of time, instead of the spike
density. This means tha(t) ~ 7A(t), with some time con-
stant7. This creates a difficulty in the normalization condi-
tfon a;(t) +a;(t) +r;(t)=1 and in the interpretation of the
outcome of simulations within this model. Similarly, it is
difficult to identify the parameters of the model with experi-
mental data. Again, after the derivation of our pool dynam-
ics, we will see that the pool model of this subsection can be

Consider a pool with POOI neurons that can be in either | yo 1904 as an approximation of a more general pool dy-
of three different states: active, refractory, and quiescen amics

They can be active, which means that they released a spike in

a certain past time interval; they can be in a refractory state

(after firing); or they can be quiescent, that is, they do not !l MICROSCOPIC MODEL: SPIKING NEURONS

fire and do not feel the refractory effects anymore. _ In this section we introduce the basic notions that define a
Between the three states, transitions are allowed with Bool dynamics.

certain probability. We defing; as the number of neurons of

pool i that fired recentlyr; as the number of pool neurons

that are in the refractory state, agdas the number of qui-

escent pool neurons. Neurons from #yesubpopulation de- Imagine a pool composed of extensively mas¢ 1 neu-

cay toward the refractory state with a ratesimilarly, neu-  rons with the same neuronal dynamics parameters. Inspired

rons from ther; subpopulation decay toward the quiescentby the three-state system description of Ré&f/] presented

state with a ratg3. On the other hand, neurons from the in Sec. |l B, we now introduce a three-stateuron A single

quiescent and refractory subpopulations can be activated byeuroni, 1<i<N, can be in one of three different states: it

a synaptic input fieldh; with transition rateso,(h;) and can beinactivated(i), it can beactivated(a), or it can be

o,(h;), respectively, witho;(h;)<o,(h;). The three states firing (f). A neuron can only fire, i.e., release an action

with their subpopulations and the allowed transitions are il{potential(or spike, if it is activated. If this is the case, the

The necessity of having at least two variables for the gen
eration of oscillatory pool behavior has been exploited in
another graded-response-like model that relies upon a mo
realistic neuronal basisl7]. Instead of a second pool as in
Egs. (5), a subpopulation of refractory neurofwhich are
refractory because of recent spikjrigkes care of the inhibi-
tory effects.

A. Single spiking neurons

lustrated in Fig. 2. neuron fires with some probabilitit/ ] h;(t)] during the
Assuming a first-order decay between the three subpopunterval (t,t+At], depending on its synaptic input field
lations, we find h;(t). After the release of a spike, the neuron is to remain

inactivated for a certain time period of leng#li®s During

this period it cannot spike, so that it is in an absolute refrac-

tory state. Following the absolute refractory period, the neu-
(6) ron enters a relative refractory period during which the neu-

d
mai(t): —aai(t)+qi(t)oq[hi(D) ]+ri(t) oy hi(1)],
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"""""""""""""""" P tion function.” It is divided into two parts. For a period of
length 25 we have theabsolute refractory perigdwith

1[h(t)] pa(s)=0 ands=t—t} the elapsed time since the last spike.
h(t) After that period, the neuron enters thelative refractory

period, during whichp,(s) rises from some valup(y®®
toward 1 fors—«, according to a differentiable function
PA(s). Between the two refractory periods, we allow a dis-

a p, continuity of the functionp,(s) at 2
/ 0 for Os<s<<y2
i I-p, Pa(S)= Pa(s) fors= 2 (12

FIG. 3. Definition of the microscopic model of a spiking neuron. o
In our description, a neuron can be in either of three states: inacti- B. Synaptic field
vated (), activated &), or firing (f). Transitions between the three

?Eﬁitigetr?!?\év:dezzt\gr??r?etﬁ]:srldsthf: tlif%/;?r(cf)?tt’hvggrlletr:rts; lows. Each pool neuron releases a series of action potentials,
; P P! v each of which, after a fixed delay period, reaches a synapse

thef level [slow, with a transition rate that depends on the synapticOf another neuron. This causes a temporal variation of the
input fieldh(t)] and from thef level back to the level (fas). The ) P

mean occupation of tha level is given by theactivation probabil- me.mprane potential at th? postsynaptic neurpn. The tqtal

ity pa(t—t*). Refractoriness means the neuron bounces back an&a”at'on Of_ the posts_yna_ptlc membra_ne_potentla_l due to in-

forth between thé level and thea level, with 1>pa(t—t*)=0. A coming action potentials is the synaptlc_flei_eip(t). Since we N

neuron can only release a spike if it is activated.(The fiing ~ @SSume passive conducting characteristics of the dendritic

probability for activatedneurons in a time interval of lengtht is  tree, the synaptic field is calculated as a sum of the contri-

field dependent and equal tot/7[h(t)]. After firing, t* is reset  Putions of single action potentials. If we neglect the form of

and the neuron is inactivated. a spike we can characterize action potentials uniquely by
their firing timest!, with f=1. Heret!=t* is the most

ron has a certain probabilitys>0 of being activated, and recent action potential of a neuranin a spike train ofé

thus a nonvanishing total probability for a spike release. Wwéunctions,

assume that only the time elapsed since the very last spike of

a neuron at’ dgter_mines its rgfractoriness, so that we end S(t)=2, s(t—th, (13)

up with an activation probability p(t—t*)=0 for t f

=t’ . This is the “renewal hypothesis” for spiking neurons; o _ )
see e.g., Ref2]. with t;<t. The synaptic field is then calculated by inserting

Figure 3 shows the three possible internal states of &€ coupling strength;; for connections from neuropto
single neuron and the allowed transitions. We assume thReuroni and flxmg.the temporal variation of the postsynaptic
transitions of a neuron’s state between the inactivated staf@€mbrane potentiak(s):
and the activated state to occur on a fast time scale as com-
pared to the transition of a neuron from the activated state to
the firing state and the modification of the activation prob-
ability with time. It is therefore sufficient to regard the mean
occupationp, of the activated state of a neuron. From the |t may be well to realize that we have defined pool neu-
activated state, and depending on the synaptic input fieldons to have the same input-output connectivity characteris-
hi(t), a neuron can be pushed into the firing state with a ratéics. This means that all neuronsf the samepool x feel the
{rLh;(t)]} "% A neuron in the firing state releases a singlesamesynaptic fieldh(x,t). If the coupling strength from a
spike, and drops immediately back into the inactivated state;onnection conveying signals from a neurjoay of pool y

In summary, the total firing probability of a neurodur- o a neurori e x of pool x is designated witld(x,y), we get
ing an interval {— At,t] is given by the joint probability that

The synaptic field of a single neuron is calculated as fol-

N o
hi(t)=2>, J”f dsa(s)S;(t—s). (14)
j=1 0

a neuron is in an activated state and that it is pushed into the o
firing state by the synaptic field;(t) during that time inter- h(X’t):; gy J(x.y) o dsa(s)Sj(t—s)
val:
Prob{i e a andi fires in (t,t + At] due to fieldh;} =E J(x,y)f dsa(s)A(y,t—s), (15
y 0

=Prob{i fires in(t,t+At] due to fieldh;| i € a}

At with the pool activity
X Probf{i Ea}:mpA(t—ti ). (11 A(X't)ZE Sj(t). .

jex
The refractory properties are governed by the time course

of the activation probability function *pa(t—tf)=0, The pool activityA(x,t) has the dimension spikes to time
which in this paper will also be called in short the “activa- and is extensive; if desired, it can be normalized. The inte-
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gration of A(x,t) over a small time interval of lengtit is . 1 . .

then the total number of released spikes of all pool neurons g Ph(X.t,t*) =~ WPA(M_" )Dh(X,8,1%).

during that interval. (19)
The time course of the membrane potential variation due

to the input of a single spike follows qualitatively the form of |ntegration including the boundary conditiddy,(x,t* ,t*)

an a function: It rises to a maximum value and then decays=1 yields the “survival function”[1]

back toward zero. In our case, the keraét) will be chosen

to be a § function, a(s)=48(s—A%), so that h(x,t) ¢
Dp(x,t,t*)= exp{ —J
t

1
=3 J(X,Y)A(X,t—A%) or to have a Poisson-like time dt’—pA(t’—t*)],

coursea(s)=a®(s) with * glh(x,t")]
(20
(s— APk that is a measure of the fraction of neurons that have spiked
K(a)=@(s— A" = 7 e (a— AR pike
a(5)=0(s-4%) Cy X —(s=A™)/7,]. last att* and did not spike again until
(17

B. Time evolution of the pool-averaged activity
Here 1, is the rise times the time difference to the firing of Using the survival function, we can now calculate
the presynaptic neurom, the normalization factorA® the n(x,t,t*)At*. It is equal to the number of neurons
axonal del_ay time between two pools, afidthe H_eaviside A(x,t*)At* that actually spiked during the intervat*(
step function[®(x)=1 for x=0, and O otherwise The  _A¢x 1*] multiplied by the fraction of surviving neurons at
constant, can be used to normalize the alpha function by itsjme t:
maximum amplitude or its area. The maximum of the
function is attained afsy,=A*+kr,, and is equal to N(X, )AL =D (Xt tF)A(X, TF)At*. (21
ama= (k7)€% The area of the function give§,
=7-‘;+1F(k+ 1) with I'(k+1)=k! for ke N. The pool form  Taking the limitAt* —0 and adding over all possible last
of the synaptic field, viz. the last of Eq45), will be used in  firing timest* (that is, over all possible refractory states of
the following sections for the formulation of our pool dy- the pool neurons we obtain the total number of pool neu-
namics. rons:

t
IV. POOLS OF SPIKING NEURONS N(x):f dt* Dp(x,t,t*)A(X,t*)

The present section is devoted to a derivation of the time
evolution of the key variabl&\(x,t), the activity. To this _[” _ _
end, we start with the survival function that tells us how long fo dsDy 0t E=S)AX E=S). 22
a neuron survives without spiking. This will allow us to ob-
tain an expression for calculating(x,t), viz. Eq. (26), By exploiting the same kind of argument, we can calcu-
which constitutes the key to the ensuing analysis. late another important macroscopic pool variable. The mean
fraction of activated pool neurons that have spiked for the
last time att* is given bypa(t—t*). Therefore, the mean
number ofinactivatedneurons under the same conditions is
In a pool of extensively many equivalent neurons, we takel —p,(t—t*). The number of pool neurons that spiked last
advantage of the property that all neurons of a po@el a  during (t* — At,t*] and that are inactivated at tiniés then
common synaptic field. We now group the pool neurons into
subgroups with the same last firing timgs for example, NOGEE )AL =[1—pa(t—t*)]Dp(X, t,t* ) A(X, t*)At*.
n(x,t,t*)At* is the total number of pool neurong x found (23
at timet with t* e (t* — At*,t*]. For timest=t*, we can
then look at the time development of these subgroups. Letrom this we can calculate the total number of inactivated
Sh(x,t,t*) be the fraction of a group of neurons that hasneurons of the pool:
spiked at least once during*(t] (the suffix h denotes a
functional dependence of the function upon the fie(d") NL(x.1) f‘
(X, t) =

A. Survival function

during the past time’ e (t*,t]). Then this fraction changes xdt*[l_ PACt =) IDR(G LT AGE)

in the interval (—At,t] by

=fxds[l—pA(s)]Dh(x,t,t—s)A(x,t—s). (29
0

At
AS,(t,t )ZWDAU—I N 1=Sn(x,t,t%)].

(18) The number of pool neurons the&n contribute to the activ-

ity A(t+At)At during the next time steptt+ At] is given
Taking the limitAt— 0, we obtain, for the time derivative of by the total number ofctivated neurons,N(x) —N;(x,t).
the fraction of neurons that diabt spike again duringt(,t] Because the activated neurons contribute to spiking with a
[i.e., of Dp(x,t,t*):=1—S,(x,t,t*)], probability { 7 h(x,t) ]}~ At, for the activity we obtain
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At These equations have been calculated by differentiating re-
A(xt+At)At= W[N(X) —Ni(x,t)]. (25  peatedly the field™(x,t) and by extracting the terms of the
’ additional fieldsh"(x,t). The coupling with other pools en-

This equation is valid as long as(x,t+At)At<N,(xt). ters the differential equation system only in the second of

That is to say, as long ad,(x,t) can be considered as ap- qu. (2_8)'_| d b d if f |
proximately constant during a time interval of length. We simiiar proce ur(ek) can e\us_e I a sum of severa
note that in this case the activatioh(x,t+ At) does not functions of the typex™(s), ke, is used as synaptic ker-
depend on the length of the time inter\Liai For any small nel. In this case, separate differential equation systems of the

enoughAt, the result will be the same. Hence we can takeform of Egs.(28) have to be used to compute the different

field contributions. The corresponding field§9(x,t) have

the limit At=0: then to be added. This also opens the possibility to approxi-
1 mate « functions with delay by weighted additions of
A(x,t)= W[N(X)_ N,(x,t)]. (26)  functions without delay, thus resulting in a differential equa-
T i)

tion system without delay for the synaptic field. Hog N,
the integral equatiofthe second line of Eq15)] instead of

This is a nonlinear integral equation for the time evolution of o jifferential equation€8) has to be used.

the activity A(x,t); cf. Eq. (25). It is the central equation
from which we derive the pool dynamics. The nonlinearity
of EqQ. (26) is hidden in the synaptic field(x,t), which can
depend on the activities of all other pools that provide syn- The behavior of a neuronduring its relative refractory
aptic input, including itselfaccording to the second line of period (see Sec. Il A is characterized by the differentiable
Eq. (15 in Sec. 111 B]. function P(s), with s=(t—t). From now on, we will re-
Starting from this equation, we will gain a differential strict ourselves to the exponential cagxp), the case of a
equation system that describes the dynamics contained insigmoidlike time evolution of the activation function after
plicitly in Eq. (26) and that is better suited to analytical treat- the absolute refractory periagigm), and the case of an in-
ment and numerical simulations. This will provide us with averse decayinv):
straightforward and natural description of the activity dy-
namics of neuronal assemblies. In addition, the differential 1-poexd —(s— ¥/ 7e, exp
equation form will allow us to compare the system with the Pa(s)=3 1—po/{1+ exf(s—so)/ T}, Sigm
models discussed in Sec. Il.

B. Activation probability functions

1— 7/ (S—Sp), inv.
(29)
V. DIFFERENTIAL EQUATION POOL DYNAMICS

In this section, we are going to reduce the integral equa--rhe constanto, 7, aNds, are free parameters of the

tions for the pool synaptic field(x,t) and the pool activity ?C“V?gg‘ Luglctfmn. I hasl tof bethve.r ified thatstC.PAt(.s)sfl
A(x,t) to a system of coupled differential equations. Wet.Or Y \ES\ 2’9 ortﬁ_xamp &, Orth ?mversﬁe at(': |v|a ion EQC
begin with the synaptic field because its derivation is ion in Eq. (29), this means that we effectively set

. . . >7'ref+ SO
;tcrg\llgi)tf;tforward. Then we derive the dynamics of the pool The activation functions obey the differential equation

(1
A. Synaptic field - [1-Pa(s)], exp
ref

The aim of this section is to express the synaptic field 1
acting on the neurons of a specified pool through differential — Pa(S)={ —[1—Pa(S)|{1—[1—Pa(s)1/po}, sigm
equations. For a synaptic field calculated according to theds Tref
second line of Eqs(15), with an a kernel of the typex(s)

1 .
=aM(s), ke N from Eq.(17), we define additional fields \ T—f[l— Pa(s)1%,  inv.
re

- (30)

hO(x,t)=>, J(x,y)f dsa)(s)A(y,t—s), (27
y 0 These properties will be used in the subsequent sections for

the derivation of the model. Figure 4 shows the different

with 1 e N, 0=I<k. With this definition, the field we are activation functions.

looking for ish®™(x,t), and it is straightforward to see that

the field dynamics can be expressed by the differential equa- -~ Time evolution of the number of inactivated neurons

tion system ) ) ) )
Here and in Sec. V D, we will reduce the integral equation

d Cl_1 1 for the pool activity[Eq. (26)] to a differential equation sys-
&h(')(x,t)zl C—h('_l)(X,t)— T—h(')(X.t). tem. To this end, we consider the time development of the
! “« total number of inactivated neurom§(x,t). We use the*
q 28 form  of Eq. (24), the property d/dtD(x,t,t*)
—h(o)(X,t):E J(X,y)A(y,t—AaX)— ih(o)(x,t). :—{.T[h(X,t)]}ilpA(t_t*)D(X,t,t*), and note that for a
dt y Ta function of the typeh(t,t*) we have
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Dn(x,t,t—s)

= [d
N|(x,t)=A(X.t)—f0 dS[d—SpA(S)

* . 7 1
oY S 10 15 20 aYs 10 15 20 0 Ys 10 15 20
Exponential ’ Sigmoidal ’ Inverse ’ X A(X't B S) a T[ h(X,t)]
FIG. 4. The different activation functionms (t—t*) used for the -
derivation of the pool dynamics. At= " the function may have, X f ds[1—pa(S)1pa(S)Dx(X,t,t—Ss)
and here has, a discontinuity. Fox t*, the neuron is in an abso- 0

lute refractory state because it has just spiked, gy(d—t*)\.0.

Fort—oe, the refractory effects vanish, apg(t—t*)—1. In case XA(X,t—s). (31
of activation functions with a discontinuity®*sis the length of the ] ) !
absolute refractory period. Thus the number of inactivated neurons grows vé(x,t).
This makes sense, because neurons that spike are inactivated
d (o immediately afterwards. On the other hand, the number of
— dt*h(t,t*)=F[t,f(t)]f'(t)—F[t,g(t)]g’(t) inactivated neurons decreases with time as the refractory ef-

dtJ s fect on neurons decreases. Moreover, the tqrgis)[1

—pa(s)] selects a time window of the activity that contrib-

+ fg(t)dt* ih(t,t*) , utes to further changes of(x,t).
f(1) ot Exploiting the propertie$Eq. (30)] of the chosen activa-
tion functions(29) of Sec. V B, and taking into account the
S0, as discontinuity ofpa(s) at s=y*S we obtain

—N,(X,1)=A(X,t) — PA(Y*)A(X, t— vy — fdsPA(s)[l PA(S)IDh(X,t,t—S)A(X,t—S)

[h(X ]

p
f dg1—PA(S)IDp(X,t,t—=8)A(X,t—S) exppa(s)

[1_PA(S)]]
Po

Tref

[

1
= absds[l—PA(sn{l—

Tref

Dp(x,t,t—s)A(x,t—s) sigmpa(s) (32

f dg1—PA(S)]°Dp(X,t,t—s)A(X,t—S) inv pa(s).

\ Tref

Instead ofPA(S), we want to express our dynamics using the original activation fungijs). For this purpose, we
introduce a quantity

b: b:
yas abs

M(xt)= | 7 dsDy(xtt=s)AXt=s)= O’ dsA(x,t—s), (33

which is interpreted as the number of inactivated neurons for a pool with absolute refractory period only, and rewrite the
previous equatiori32) in the form

N|(X,t):A(X,t)_ pA(’yabﬁA(X!t_ ya % [h(X t)]f dSpA S)[l pA(S)]Dh(X t t— )A(X,t—S)

’

fds[l PA(S)IDp(X,t,t=S)A(X,t—S)  exppa(s)

[1—pa(s)]
Po

Tref

-\ = f dg1— pA(s)][l— ]Dh(x,t,t—s)A(x,t—s) sigmpa(s)

* oc‘ds[l—pA(s)]zDh(x,t,t—s)A(x,t—s) inv pa(s)

TrefJ 0

+ iM(x,t). (34)

Tref



1862 J. EGGERT AND J. L. van HEMMEN PRE 61

What is the relevance of this equation? Since the dynamics * i
of A(x,t) is determined by the dynamics bi{x,t) and of  °% B&® 0-°
Ni(x,t), it is of primary importance to understand the time .
development of the number of inactivated neurons. In the,
next section’VV D), we will see how this allows us to derive \

Oqgabs 5 10 15 20 8 O,Yabs 5 10 15 20 8

systematically a system of differential equations for the dy- ¥ .
namics OfA(X,t). Activation function Recovery kernels

[1-pe1"

FIG. 5. The activation functiop,(s) is shown with its recovery
D. Pool dynamics kernels[ 1—pa(s)]™. With growingm, the kernels include less and

: : . less of the past time The pool dynamics is expressed with the help
The numberN,(x,t) of inactivated neurons of a pool is 8f a series of recovery variable€"(x,) ([ 1 — pa(t—t*)]™ cal-

the assembly-averaged mean inactivation probability. For th .
. .. Culated by computing the pool average of the recovery kernel func-
calculation of the mean, we need the momentary densn;!i

p(X,1,t*) =Dy(x,t,t*)A(X,t*) of neurons with a refractory

state defined by their last spike t&t. With this density and
the definition g P Y N(x,t) ==([1—pa(t—t*)]™), (38

so that, forme N,

t
<...>:=f dt* p(x,t,t%)- - -, (35 t
- N<m><x,t>=f dt*{1— pa(t—t*)}™Dp(xt,t YA )
we can write B
_ * _ m _ —_
Ni(X,t) =(1—pa(t—t*)). (36) _fo ds{1—pa(s)}"Dp(x,t,t=s)A(X,t=s).
The kernel 1-p,(t—t*) determines the influence of the (39

past activity on the quantiti,(x,t). Instead of using inte-

gral equations which incorporate the past activity by mean®(™(x,t) obeys the relationship

of equidistant time slice§magine a Riemann sum approxi-

mation of the integral equatiopsve could try to incorporate NOx)=ND(x,)=N@(x,t)=- - . =N (x,1)Vt,

the past using a set of kernels similar te- p(t—t*). The (40)
underlying problem is that of the reducibility of an integro-

differential equation to a system of differential equations. Itand has the property

has been treated by a number of authors, e.g., see, Refs.
[18,19. In principle, a reduction of Eqg31) or (34) into a
chain of differential equations is possible for a suitable
choice of intermediary variables. The problem is that there is

f:ds{l—pA(S)}mpA(s)Dh(x,t,t—s)A(x,t—s)

no systematic derivation of these additional variables, so that =N (x,t) = NMD(x,t). (41)
we have to guess. As indicated above we will use the func-
tion 1—pa(t—t*) for this purpose. Figure 5 shows an example of a sigmoidal activation func-

To accomplish the reduction of E¢34), the number of tion pa(s) with an absolute refractory period of lengji"s
inactivated neurond!,(x,t) will be treated in a way equiva- and the recovery kerne[d —pa(s)]™
lent toNM)(x,t), the total number of pool neuromix) will For these recovery variables, we can calculate the time
be handled asl(®(x), and the numbeN (x,t) of inactivated ~ derivative in the same way as f&(x,t) in Eq. (31):
n(?u)rons for a pool with absolute refractory period only, as
N*™/(x,t). Furthermore, we remark that definitid@2) of * _
N(x)=N©(x), definition (24) of N,(x,t)=ND(x,t), and &N(m)(x't):A(X’t)‘mfo d{1—pa(s)]™*
definition (33) of M(x,t)=N®)(x,t) are equivalent to

d
N(O)(x)=<[1—pA(t—t*)]°>, X d—spA(s) D,(xt,t—=s)A(Xx,t—s)
1 o
NO(x,t) =([1—pa(t—t*)]"), 37 _WJ’O ds[1-pa(s)]™pa(s)
N (x,t) = ([1—pa(t—t*)]7). X Dp(X,t,t—S)A(X,t—S). (42)

Extending these definitions, we introduce additional time-Finally, with property(41), we obtain a recursive set of dif-
dependent inactivation quantities, or “recovery variables” ferential equations:
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& Nt = Ax t) —{1-[1-pa(¥™ M AXt~ By T[N, t) N (1))
dt ’ ' PalY Y T Y ] ' ’
(M
T—f[N(”‘)(x,t)—M(x.t)] exppa(s)
m
=1 AN =M = [NTTDH) =M 1)]/Po}  SIgMPa(s) (43
ref
m
—[N™MFD(x,t)=M(x,t)] invpa(s).
\ Tref

The last recovery variable(*)(x,t) = M(x,t) increases with The remaining axonal delay in Eq&8) can be avoided
the number of spiking neurons, and decreases with the nunusing the procedure for synaptic fields wittfunctions with
ber of neurons that are released from their absolute refractoryelay as explained in Sec. V A.

phase:

d
&M(X,t)=A(X,t)—A(X,t— yabﬁ. (44) VI. CONSEQUENCES
In this section, we are going to analyze in detail the con-

This completes our derivation of the pool dynamics. Systenfeduences that follow from using the syst¢4®) for the
(43) looks linear but it is not since the field(x,t) [Eqs. calculation of assembly dynamics. Syste4d) is exact for
(28)] contains the recovery variabR((x,t) through the assemblies composed of gxtenswely many spiking neurons.
activity A(x,t). The complete dynamics is defined by the Nevertheless, for a numerical implementation of the dynam-

field dynamics given by Eq€28) of Sec. V A together with ics, the infinite chain of differential equations has to be ap-
the dynamics of the recovery variables given by E4S) proximgted by a finite differential equation_system. Breaking
and(44). The spike density acts only as an auxiliary variablethe chain earlier or later leads to a dynamics that follows the

that is calculated from the first recovery variable using thetXact result in a smooth fashion or in every detail. One can
main equatior(26) of Sec. IV B therefore approximate the pool dynamics with the desired

accuracy. Here we discuss systematic approximations to the
differential equation system and show simulation results for

A(x,t)= [N(X)—ND(x,1)]. (45 the different approximation schemes.

1
h(x,)]

Other poolsy influence the dynamics of poot through
A(y,t) in the last equation of the field(x,t) in Egs.(28). i .
Axonal delays appear in the second of EE@$), in the dy- Contrary to previous work on pool dynamics, the present
namics of the recovery variablé43) due to the discontinuity procedure is exact for pool_s of exten;wely many neurons
of pa(s) at ¥ and in Eq.(44) also because of the absolute SINCe it does not rely upon time averaging for its c_ierlvatlon.
refractory period. This allows us to qugntltanvely model pool activities V\_/eII
To model pool dynamics using differential equations beyond the _qu_ag,lstatlonary regime. But for n_umerlcal simu-
without delays, a differentiable activation functiqua(s) lations, the infinite chain of differential equations has to be

without absolute refractory period has to be chosen. In thi@PProximated by a finite system. _
case, systen3) reduces to Because of property40) of the recovery variables, we

can approximate the infinite chain of differential equations
d [system(43)] by breaking it at a desired recovery variable
aN(m)(x,t) N("*1)(x,t) and by introducing an appropriate dynamics for
this quantity. In this section, we will proceed to analyze dif-

A. Systematic approximations

1 ferent approximations of the differential equation system for
=A(x,t)— m[N(m)(X,t)— N(MED(x,1)] our pool model.
no There are two sensible ways of approximating
[ m N 1(x,t), which differ according to the desired dynamical
T—N(m)(X,t) exppa(s) simulation range. Assuming thatis large enough, the influ-
ref ence of the relative refractory field on the+ 1)th recovery
m _(m N(me : variable can be neglected, and we can approximate
~ rref[N( (%) =N D(x,1)/ o] SigMPpa(s) NMFD(x,t)~M(x,t); or N D(x,t)~0 if we are dealing
m with neurons without absolute refractory period.
—NM™D(x,t) inv pa(s). (i) For fast, transient dynamicwith sharp activity steps,
\ Tref N("*1)(x,t) is then calculated according to the dynamics of

(46) M (x,t1):
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jN(””)(xt) i|\/|(xt) A(X, 1) —A(X,t— 529, A(I;\;

(47) .

or, for neurons without absolute refractory period, we use Without rel. refr. pgriod
Eq. (46) for d/dtN™M(x,t) and N 1(x,t)~0. In the case 08

of exponential or sigmoidap,(s), this gives for thenth 0.6 With rel. refr. period
recovery variable
0.4

d (n) ' ff

— N(n ~ \ Difference

dtN (X,1)=~A(x,t)— [h(x t)] N )(x,1). j X

(48) 4 > h
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(ii) For slow dynamics, we can approximabé™* Y)(x,t) FIG. 6. The stationary spike density for a pool of spiking neu-
by its stationary value. For slow dynamics, the activity rons which receives a constant synaptic input fieldan be ex-
A(x,t) and the fieldh(x,t) are approximately constant dur- pressed by a gain function that is similar to the logistic gain func-
ing the time period of the kerne[1—pa(s)]"*! of  tion. Here we show the gain function for a pool of neurons with

N™*1(x.t). This means that absolute refractory period onlghin solid line), and for a pool with
o absolute and relative refractory perigithick solid line. The rela-
NOFD(x, 1) ~[ 1225 k(" D(x) JA(X,1), (49) tive refractory period reduces the activity for fieldlose to the

_ o ) _ threshold(dashed line: difference between the gain function without
with «{"*)(x) being the time constant of the¢ 1)th ker-  and the gain function including relative refractory effects

nel due to relative refractory effects: ) .
With the often used ansatzh]= o exd —28(h— 6)] with

(1+1) % i1 spike rate at thresholcgl, noise parametegs, and threshold
Ky (X)= f L1 PA(S) ] Di(xtit=s). (500 ¢ (see, e.g., Refl]), we obtain

Herex{"*Y(x) has been evaluated for a quasistationary field CIxh(x)]
h(x,t) (i.e., the field is assumed to be constant for a period 1 1
during which the expression in the integral is largand, = b ; ) be’
thus, it is written without an explicit dependency onlt YL+ exp{—2B[h(x) =~ 0" [} + i () v
depends, however, on the figid For neurons wittabsolute (54)
refractory period only «"*Y(x)=0, and we can use . o
NMFD(x 1)~ y®PA(x,t) as the stationary approximation. with the modified threshold
Similarly, in the case of pools with eelative refractory pe- 0 =0+ 1/(23)|n(7-0/7ab3 (55)
riod only, we useN™*Y(x,t)~«"*Y(x)A(x,t). The slow . o )
approximation is exact when the activity approaches a ste@nd the relative refractory period time constadit’(x) as
tionary value. defined in Eq(50).

Figure 6 shows the stationary spike densityx) as a

function of the synaptic fielth(x). The pool spike raté(x)
saturates alN(x)/y***as it is bounded by the inverse length
of the absolute refractory period. The time constaﬁ'?(x)

For constant input fieldh(x,t)=h(x) and stationary ac- quantifies the influence of the relative refractory period on
tivity A(x,t)=A(x), it is d/dtN™M(x,t)=0 Vm, so that the stationary pool spike rate. It reduces the activity for in-
from the assembly dynamicg3) and (45) only remains termediate field$i(x)~ 6. The noise factopB and the effec-

tive thresholdd’ determine the slope and the inflection point
1 of the gain function. Increasing the length of the absolute
Th(x)] refractory periody?*sor decreasing the firing rate at thresh-
old 7, * shifts the effective threshold toward higher values.
Using this equation, and expressi6t9) for NY(x) in the  We see that the present model lets us understand the gain

B. Zeroth-order approximation: stationary solution and gain
function

A(X)= [N(X) = N®(x)]. (51)

stationary case, function quantitatively in terms of theicroscopic neuronal
) e parametersy®®S «{V, 7,, B, andd. This marks a difference
N =[ ¥+ k(P (%) JAX), (52 to standard gain functions as those used with other graded-

. . . ) response pool models.
we can calculate the normalized stationary spike density to

C. First-order approximation: quasistationary dynamics
x) 1 and graded response

(53

NOX) 5308 7 h(x) ]+ wfD(x) The graded-response models presented in Secs. Il A and
IIB have a serious disadvantage: they have free dynamical
If 7[h] is a monotonously decreasing functiontpfwe get a  parameters which can be chosen at will. Of course we could
gain function Gh] that saturates at largh and has a fit the model parameters with experimental data, but still it
sigmoidal-like appearance. would be difficult to interpret the data, because the free pa-

G[x,h(x)]:=
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rameters stem from the dynamics derivation proce@mae  with

precisely, from temporal averagin@nd not from the micro-

scopic properties of the neurons. 1 1 1
Here we move in the opposite way. We start from our = +—. (59

main equationg43) and derive a closed expression for the (D] 7RO Tres

simplest possible assembly dynamics. This results in a ] ) )
graded-response-like relaxation dynamics that followdNot only has this graded-response-type equation the micro-

smoothly and coarsely the real dynamics of the assemblygcopically correct stationary solutions but it also provides us

Additionally, all its parameters can be interpreted in terms ofvith the relaxation time constanty[ h(x,t)]. This means
the microscopic neuronal parameters. that if we are interested in a realistic quasistationary pool

Since we want to gain a relaxation dynamics without depehavior, graded-response equations with fixed relaxatiqn
lays, we assume that there is no discontinuity in the activafime constants as those of Secs. IlA and IIB are not suffi-
tion functionpa(s), i.e., the neurons have a relative refrac-clent. _ . '
tory behavior but no absolute refractory period. We start Equation(58) is the correct way to introduce a systemati-
with a first-order approximation of our main equatiddé). ~ cally derived graded-response-type dynamics for pools of
We use the slow-dynamics approximati@®), and chop the SPiking neurons using the chain of differential equations. The

differential equation system at=1, so that effect of Eq.(58) is a dynamics that follows the real activity
dynamics by smoothing out sharp activity peaks. Neverthe-
N@(x,t)~ kP (x)A(x,t) (56) less, it will do so following the envelope curve of the activ-

ity, and it will still approach the correct stationary solutions
with «?)(x) calculated as specified in E¢G0) [depending for a constant fieldh(x).
onh(x,t)]. (The slow dynamics approximation now involves
temporal averaging. The difference to standard gradedp nigher-order approximations: Realistic assembly dynamics
response models is that the averaging occurs over intrinsic ) ) ] )
neuronal time intervals, and natpriori over some arbitrary ~ Higher-order approximations serve to model in a quanti-
interval of lengthT. Therefore, it does not introduce addi- @tively accurate way the dynamics of assemblies of spiking
tional dynamical parameters. Moreover, since we look afleurons. Using the fast dynamics approximatid), the
slow, or even quasistationary, dynamics in this case, the tenfn0del is capable of reproducing the time-course of the ac-
poral averaging is justified. We also remind that we canflVity of & pool composed of extensively many neurons, in-
avoid temporal averaging if we use the fast dynamics apgludlng fast tranS|ents_a}nd sharp activity peaks like t_hose
proximation, resulting in a first-order approximation that hasPccurting when the activity a_pproaches oscillatory solutions.
the form of a differential equation with delayThis means The different recovery variables serve as memory buffers
that we only have two state variables, namely, the activinfor the past activity. Highetwith largern) recovery vari-
A(x,t) and the first recovery variablB®(x,t)=N,(xt) ables are responsible for the more recent past, and influence

which is the number of neurons in the inactivated state. Th&h€ response of the pool to fast transients. Taking only one or
number of inactivated neurons is obtained frodfx,t) WO recovery variables results in activities that follow the

=7 h(x,t)] YIN(X) —N,(x,t)], so as to give real activity in a s_mooth, approximated way. _If we include
more recovery variables, the assembly dynamics also follows
N,(x,t)=N— [ h(x,t) JA(X1). (57) the smaller details of the real activity.

Figures 7 and 8 show simulations of transient and oscil-
latory pool dynamics calculated using E¢43). The activity
is compared with results gained from simulations using as-
semblies of explicitly modeled spiking neurons.

We now turn to the activityA(x,t). We assume that, for
guasistationary activity, the fields evolve more slowly than
the activity, and neglect the changeshgk,t). [Without loss
of generality, we can include a term that considers the varia-
tion of A(x,t) due to changes df(x,t), so that this assump- VIl. CONNECTION WITH OTHER MODELS

tion is not really necessary for the calculation of first-order |, this section, we compare the model with other neuronal
dynamics. It is omitted only to gain an equation that can beydels. Specifically, we show that standard gain functions
compared to other graded—re_siponse mogldlsis leaves us  4ng graded-response models can be understood in terms of
with d/dtA(x,t) ~—7[h(x,t)]""d/dtN\(x,t), and inserting  oyr pool dynamics, and that this allows us to interpret the
Egs.(56) and(57) into the dynamics equatio@6) for Ni(t)  parameters of those functions in terms of the microscopic
with exponentiap,(s) [the same steps can be applied to theparameters of our underlying neuronal model. Furthermore,
other functiongpa(s)], we arrive at we show that our model is equivalent to a pool of spike-
response or integrate-and-fire neurons.

d
A. Gain function
B 1 In Sec. VIB, we have shown that the stationary solution
=—AKXD+ 7 h(x,t)] { N(x) = 7ol h(x,1)] of the pool dynamics is the sigmoidal gain functi@). In
@)(x) case we have an absolute refractory period omﬂ&),(x) van-
|: Kh X
1

. ishes, and we obtain an equation of the same form as the
T h(x,t)] standard logistic gain function:

A(X,t)}, (59
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AW G[h(x)] . !
X)]=—
¥ 1+ exp{—2p[h(x)—6']}

Paol of 10"5'spiking neurons
Differential-equation paol model ------= E

044 |
11

=—— —(1+tanh{B[h(x)— 6']}).  (60)
yabsz

Since Anae=1/72 is the maximal spiking activity of the
neurons, and normalizing the activily—A/N, we obtain

A(X)=Anas (L+tanh{B[h(x)— 6’ 1}). (61)

This means that for pools of spiking neurons we can use the
standard logistic gain function to obtain realistic stationary
results, and we know how each parameter of the gain func-
0 . . . tion can be interpreted in terms of the microscopic param-

o 0 100 1% 0  eters of the underlying neuronal model.
I t (ms)

FIG. 7. Simulation of the activityA(t) of a single pool of neu- B. Standard graded-response models

rons without couplings, using spike-response neuteakd line) or The standard graded-response models of Sec. Il A can be
Egs.(43) (dashed ling From 50 to 150 ms, a constant external field motivated as follows from our pool dynamics. We look at the
is applied(black bay. The sudden onset of the external field evokesnormalized form A— A/N) of Eq. (45). In a quasistationary

a sharp activity peak which decays in a damped oscillation towardgegime we define a dynamics by an exponential relaxation
the new stz:]tionary state. We havebL:sed th?i f?st dynamics approxiowards the stationary solution 8]; Eq43) and(45), given
mation with n=4 recovery variables and fast approximation - —1f1 _r1 ~abs .

N@ () ~N®™)(t), meaning d/dtN®(t)=A(t) —A(t—»*), and by AC)=rTh(O ] HL= [y k0 JAGO):

fifth-order Runge-Kutta integration with adaptive stepsize. The d 1

simulations show a good quantitative agreement. TEA(XJ) =—A(xt)+ m

X{1-[ % kD) JAX D). (62)

This equation, and its simpler variarifor small [ y2°
+ kD) JA(X, 1) <1)

A(t) d 1
. ' ' TEA(X’t)__A(X'tH—T[h(x,t)]’ (63
Diffrenial apron el pocsl ——
0s | _ are of the same form as the assembly-averaged graded-
response models presented in Sec. Il A. Equat&®) will
os | | relax toward thecorrect microscopic solution@.e., solutions
that are in accordance with those obtained from simulations
o4 | 1 with single spiking neurons incorporating absolute and

relative refractory effects. There is no necessity of “time-
coarse graining” or other temporal averaging procedures to
| arrive at Eq. (62) for quasistationary activity. Graded-
! response models as in Eq62) and(63) may thus present a
valid approach, if the assembly dynamics are always close to
the stationary state calculated from the microscopic param-
IAVAVIVIVININ J A eters. For fast, transient, dynamics, the full differential equa-
of - e e e A L e tion system(43) is to be used instead. Again, as in Sec. VI,
I { (11S) it is now possible to understand how each parameter of the
graded-response model can be interpreted in terms of the
FIG. 8. Simulation of the activityA(t) of a single pool of re- microscopic parameters of the underlying neuronal model.
ciprocally coupled neurons, using spike-response neufsokd The only exception is the arbitrary relaxation time constant
line) or Egs. (43 (dashed ling From 50 to 250 ms, a constant 7. For a calculation of the relaxation time constant using

external field is appliedblack baj. The parameters of the pool intrinsic neuronal parameters refer back to Sec. VIC.
neurons fulfill the locking theorem. The onset of the external field

evokes a small activity peak, which grows and generates a self-
sustained oscillation. As in the previous simulation, we have used
the fast dynamics approximation with=4. The simulations show We can enhance the standard graded response rtGgjel

a good quantitative agreement, except in the tips of the activipy incorporating an additional term for the dynamics of the
peaks(finite-size effects first recovery variable. Together with an exponential relax-

03 |

02

01 |

C. Graded-response models with refractory effects
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ation dynamics ofA(x,t), using approximatiori48) for the f *
number of inactivated neurons, and assuming neurons withhi(t):; ‘]iJ’Z “ij(t_tj):; Jij Jo dsajj(s)Si(t—s),
relative refractory period only, we find 67)

d 1 =3 mt-th= [ “asn(9st-s)
—_— = — _ — 1 | I I .
TGAKD= A+ e (1N, T 0
(64) In this paper, we consider neurons with renewal. This means
N, (x,1). that only the last spike df* accounts for refractory effects,
and thus contributes to/®(t):

d
aN,(x,t) =A(Xx,t)— [—T[h(x,t)] +?ef

This system is similar to that of Sec. 1B, Eq9) and(10). hifef(t): Pi(t—tF). (68)
Neurons can be firing, inactivatéduiescent, and activated

(refractory. Between the three states transitions are allowed, The «(s) and#(s) functions of the spike-response model
some with a field-dependent rate and others with a fixed rat&an be used to model a broad range of types of neuronal
Integrating the spike density over a small fixed interVal models(for the sake of simplicity, we will drop the neuron
during whichA(x,t) can be regarded as constant, we obtainndicesi andj of the « and » functions from here on For

the absolute number of neurons that released a spike rexample, it is possible to express the so-called “integrate-
cently, a(x,t)=~TA(x,t). We further definer (x):=N,(x,t), and-fire” (I&F) type models in terms of special functions
B=1lr., o[h(X,t)]:=Q/h(x,)D(T/7), o[h(xt)] a(s) and 7(s).

=1/7[h(x,t)], az=1/7, anda,=1/T, and rewrite Eqs(64) Using the total field of the SRM, we introduce an expo-
as nential total spike probability density 4dgzy for neurons
with renewal[1],
d
2=~ aaxH+{1-r(x,Hyo[h(x,n)], Tsrd Ni (1), W) 1= ro exp {—28[ h;(t) + h®(t) — 6]}
g (65) =roexp{—2B[hi(t)+ n(t—t*)—6)]}.
gif D =aax ) =r({B+orlh(x,D ]} (69)

Then we can identify the spike probability density for acti-

The result is a system that is very similar to the model ofy5teq neurons and the activation probability for refractory
Sec. IIB. Again, we can interpret the parameters of the,ourons from Sec. 1l A with

model in terms of their microscopic parameters. The system

now depends, as in Sec. Il B, on an arbitrary integration time {rhi(O) ]} Li=75 Lexp{28[hi(t)— 6]} (70)
constantT and a relaxation time constant For quantitative

modeling it is therefore better to use the assembly modeind

presented in this paper, which is based exclusively on micro- . .
scopic parameters. Pa(t—t7):=exp{28n(t—tf)}. (71)

This means that the differential equation system for the
pool dynamicg43) is exact in the limit of pools composed of

In this subsection we compare one of the most generatxtensively many spike-response neurons with renewal and
types of model of single-neuron threshold dynamics, theefractory functionsy(s) of the form
“spike-response model’(SRM), with the presented pool
model. We show how the parameters of our pool models can i
be mapped to parameters of the SRM. It turns out that our 2B
pool model is exact for pools of spike-response neurons with
special refractory functions. In other cases, our model can b#ith pa(s) being one of the activation functions presented in
used as an approximation. Sec. VB. Figure 9 shows an example of the exponential

In the SRM, the response of a neuron, gag determined Pa(S) and the corresponding refractory function calculated
by a total field that has two contributions: one from the syn-through Eq.(72).
aptic inputs from other neurons and another that accounts for Alternatively, we can start from frequently used refractory
the neuron’s refractory behavior due to the release of actiofunctions (s) and search for systematic approximations of

D. Connection with models of spiking neurons

7(s)= 55 In[pa(s)], (72

potentials, these function through the corresponding(s). This is for
ol . example the case for I&F neurons, which use an exponential
hi®(t) =h;(t) + h{®(t). (66)  g(s). Two of the most frequently used refractory functions
are
The neuron fires deterministically or with a certain probabil-
ity, if the total field reaches a fixed threshold from below. 0 fors<O
The synaptig: input field [{t) is usually defined using an —o  for 0=s< s
«a function as in Eq(14) of Sec. Il B. Therefractory field Nexd S) = abs (73
h!®(t) is defined by arefractory functiony;(s). For spike - exp{ _STY for 5= s
trains of a neuron, Si(t)=2f5(t—tif), we have n
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FIG. 10. The exponential refractory field function 7(s)
FIG. 9. Correspondence between the activation fungigfs)

. ' . (dashed thick lingis plotted together with its corresponding acti-
(solid line) and the negative refractory functiens(s) of the SRM  yation probability functionpa(s) (solid thick line. The other four
(dotted ling. In this case, we used an exponentials) with an  fynctions are approximations of the desired refractory function
absolute refractory period of®*=1. At s=S the refractory

(dashed thin ling and the desired activation functigisolid thin
function #(s) diverges to—co. line) using a sigmoidalbetter fit of the thin curvésand an expo-
nentialpa(s). This approximation is particularly suitable for under-
and critical stimulation conditions since the curves coincide for lssge
i.e., when neurons spike again after their refractory field has already
0 fors<O

decreased noticeably.-
—oo  for 0<s<y?s

Dien(S) = (74) approximation scheme should allow for a precise quantita-
Ty f abs tive description of the activity of pools composed of stochas-
- or s= 2% ,
s— yabs tic SRM or I&F neurons.

Of course any other approximation scheme can be used as
For small5(s), i.e., in the case that the synaptic field is well. This allows us to simulate pools of neurons with dif-
small enough so that neurons do not spike again until theiferent refractory fields by means of the model presented in
refractory field has already decreased considerably, we cdhis paper.
approximate the activation functiqm,(s) in Eq. (72) corre-
sponding to the refractory functiai¥3) by VIIL. STABILITY AND OSCILLATIONS

pa(t—t*)=exd 2Bn(t—t*)]=1+2B8n(t—t*) In this section, we analyze the stability problem concern-

abs ing assembly dynamics, and present a stability criterion that
—1-287, ex;{ ST (75) is well suited to handle pools of neurons.
7
Comparing this with the exponential activation function or A. Nonstationary activity

the sigmoidal activation function in E§29), we obtain The exact correspondence between the dynamics gener-

ated by a chain of differential equations and that of pools of
spike-response-type neurol@although restricted to special
refractory functiongsallows for a simple derivation of some
known analytical results. Two points are of special interest.
First, the stability of a pools’ state of stationary activity is
relevant to the capability of a pool to develop coherent os-
palt—t*)=exp{2B8n(t—t*)}=1+2B7n(t—1t*) cillations. A stability analysis for spike-response neurons
was worked out by Gerstner and van Hemn¢h Simula-
(77) tions with the differential equation system confirm the stabil-
s’ ity conditions calculated analytically for the SRM. In passing

we remind the reader that integrate-and-fire neurons consti-
and compare this with the inverse activation functjoine  tute a special case of the SRM.

last of Eqs.(29)] so as to obtain Second, the conditions for the existence of stable coherent
oscillations have been stated in the so-called “locking theo-
Te=2B7, and sp= »20s (789  rem” for the noise-free casg2l]. In the noise-free case, a

neuroni spikes exactly when its total field reaches a fixed
Figure 10 shows an exponential refractory function aghreshold¢ from below, i.e., when
used for I&F neurons, and its approximation in terms of ref _
pa(s). We see that, for largs, the curves coincide. This hi() +hi™(t) = 6=0. (79
means that, especially in undercritical synaptic driving con-

ditions, during which the synaptic input is much smaller thanThe locking theorem states that the activity of a pool of SRM
the highest amplitude of the refractory field, the presentedheurons with renewal has a stable oscillatory solution, if all

Po=2B7y, Ter=T, and so=y"" (76)

Similarly, in the case of the inverse refractory functigi),
we can approximate

=1-28

Ty
s— yab
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t
O-Q ® N, (x,t) =N(x)— J_ dt* pa(t—t*)Dp(X,t,1*)A(X,t*)
0.6 =N(x)—f dspa(S)Dp(X,t,t—s)A(X,t—S).

0
0.4

(80)
0.2
Using this in Eq.(26), we immediately obtain

0 5 10 15 20 25 30 35 ¢ t
A(x,t)zf dt* Fp(x,t,t*)A(x,t*)
FIG. 11. Locking theorem for pools of deterministie., noise- —
free), equivalent spike-response neurons with-0. Two cases,
corresponding to pools with different refractory functions), are _ fxdth(x,t,t—s)A(x,t—s) (81)
illustrated. Let us assume that all neurons fire exactly at the same 0
momentt=0. Then the refractory fielch'®(t) of all neurons
evolves according to their refractory functios(t) [solid thin line with the firing probability at timet:
for one pool and dotted thin line for the other poet;5(t) is
shownl. The locking theorem states that if the threshold condition d
h(t) + 5(t)— =0 is fulfilled at arising synaptic fieldh, an oscil- Fr(xt,t*)=— gt Dn(x,t,t*)
latory solution for the pool activity is stable; otherwise it is un-
stable. Therefore, in the figure, the pool with the refractory field
indicated by the solid thin line has a stable oscillatory solution,
whereas the oscillatory activity of the pool with the dotted thin line
will decay (#=0 in this figurg.-

1
ZWPA(t_t )Dp(x,t,t%). (82

This is the integral-equation form for the activity of a pool of
spiking neurons as presented in REf]. Equation(81) is

neurons fire according to their threshold conditi@@) while equivalent to Eq(26) for any finite 8. We will use Eq.(81)

their synaptic field is increasing in time. This is illustrated byh . S .
Fig. 11. ere .to explain the Iow-r_10|se I|m.|t of our pool dynamics.
The differential equation pool model presented in this pa- Wl(t?o;?zsgme te_q;J*atuEIr_:]s a(s% 1|)n] Stgi.invutﬁefﬁ[g]vx(/-xﬁgi]se
per uses stochastic neurons, and thus does not apply in tll;gqt'f K P ) [Eq. ’ %O Near to thi
noise-free limit. Nevertheless, we can approximate the nois imit for Spike-response neurons meaﬁs - Ivear fo this
free case to any accuracy. We therefore expect that the st mit, the great majority of the neurons will spike when their

N : total
bility conditions stated in the locking theorem are applicable otal field h. (t) [Ea. (66.)] Qraws close to the threshom
to our pool model as well. We will see in Sec. VIII B, how- For a continuous synaptic fieli(x,t) and neurons with re-

ever, that if we stick to the integral equati instead of n_ewal, thi_s s eqL_Ji_vaIent_ to saying that the ti_meelaps_ed
9 quatieze) since their last firing will be close to the “ideal” time

using the differential equation syste(@#3), we can perform . T . .
the Eoise-free limit ang prove t%e locking theorepm for ours.*(x't) defined implicitly by the noise-free threshold condi-

dynamics. To what extent the locking theorem can be ap—Ion
plied to the noisy case and to the case of an approximated
dynamics(43) (with a limited number of recovery variables
is a question that still remains open.

In Fig. 8, we show a simulation of a single pool accordingtio
to our differential equation model and compare it with the
pool activity calculated using explicitly modeled SRM neu-

rons. The pool is coupled reciprocally with itsdlfe., the ing probability Py (x,t,t—s) is nearly zero everywhere with
H . . HEH h LU
coupling strengtld;; between any two pool neurongndj is the exception of the region whess~s*(x.t). In the low-

the samgand the parameters of the synaptic and the refrac- limit. th : E(xtios) di {0+ 00
tory fields fulfill the conditions of the locking theorem. The noise limit, the maximum of n(x,t,t—s) diverges to+,

simulation shows that a small perturbation grows until theand the location of the maximum converges toward

. ”
pool activity shows a marked oscillation. It also demon-:S (_t)' In acli_dltlé)n, V\;e see from Eq82) that Fr(x.t,t
strates the good quantitative and qualitative agreement be- s) is normalized ovet, since

tween our macroscopic pool model and microscopically " .
modeled pools. f thh(x,t,t*)zj dtFL(x,t,t%)
— t*

h(x,t) +h'®(t)— 6=h(x,t) + »(s*)—6=0. (83

Because of the spiking of the neurons, the survival func-
n D (x,t,t—s) [Eq. (20)] will present a sharp drop from 1
to 0 for s>s*(x,t). At the same time, we have
{7 h(x,t)]} " 1pa(s)=0 for s<s*(x,t). Therefore, the spik-

B. Conditions for locking and oscillatory activity

— *
To understand what happens with the pool dynamics in T ft*dt[ﬁDh(x’t’t )
the low-noise limit, we will return to the original integral

equation(26) for the activity A(x,t). Because of Eq(22), Taking advantage of these properties Bf(x,t,t*), we
we see that the number of inactivated neurbih&s,t) [Eq.  choose in the limitB—« the following firing probability
(24)] can also be expressed by function:

=1. (84
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F(x,t,t—s)=1fp8 [s—s*(x,t)]. (85 h' (x,to)
cto):=|1+ ————, (91
Using the normalization property of the firing probability 7'[8* (X,1o)]
function, we know that the past spiking time
J dVF(xtzH)zfof dt’ o[t —t* —s*(x,t)]=1. to1:=to= 8" (X,to), (92)
t* t*
(86) and the difference to the last spiking time,
From this equation we obtain At_q:=c(tg)Aty. (93

The neurons that contributed to the activity tat; +At_,
(87 now contribute to the activity aty+Aty. For c(tg)>1,

however, the activity aty+ At is larger than the activity at

t_,+At_;. This growth goes hand in hand with a contrac-
and thus, together with E@81) for the activity dynamics, tion of the activity peak, because fofty)>1 we obtain

fo:

d
1_ RS*(X":,)h’—t*:S*(X,t')

d Atg<At_;. (99)
A(x,t)=1—as*(x,t)A[x,t—s*(x,t)], (88
This means that neurons that where delayedAby; with

respect to the oscillatory peaktat; present a smaller delay
At, at the new peak dt. They are therefore “pulled” back
into the oscillatory peak, i.e., they lock. Otherwise, the time
difference to the oscillatory peak becomes larger and the
neurons fire more asynchronously, i.e., the oscillatory peak
broadens and the coherence decreases.

The conditionc(tg) >1 is identical to the condition stated
by the locking theorenj21]. It is a sufficient condition to
_ 0 : : " determine if a pool of noise-free neurons has a stable solu-
- {_[h(x’,t)_a]}’, directly gives s*(X,toTA) ion i form of an oscillatory activity. Equation88) is a
=5"(X,to) ~h"(X,t0)/ 7 (X,tg) At (the primes denote time ,ore general form of the locking theorem, and can be used

H H ’ -1 =1y _ =1y
denvaﬂv_e? . 7'[n ()17 )" () =1=(7"")"(X) girectly to calculate the time course of the activity of a pool.
={7'[7 ~(X)]} ), so that for the activity we find

with the implicitly defineds* (x,t). This expression is valid
for the activity of a pool of equivalent neurons with renewal
in the noise-free case.

We will elaborate conclusiof88) a bit further. A linear-
ization of s*(x,t) in a small interval of lengthAt
around ty, during which the synaptic field can be
regarded as constanh(x,t)~h(x,ty), and during which
we can invert the refractory field function so thsit(x,t)

IX. FINITE-SIZE POOLS AND THE CENTRAL-LIMIT

h’(x.to) THEOREM

7'[$*(Xo)] The dynamics represented by E¢®6) and (43) is valid
, under the assumption that there exist extensively many pool
h'(xto) l ) : ce e \

_— (89  neurons for each intervat{— At*,t* ]. Forfinite pool sizes,

7'[s* (X,to)] Egs. (26) and (43) are valid for themeanvalues of the ac-
tivity and the recovery variables. It should be asked, then,

Let us now consider a pool that is only coupled to itself. how noise influences the pool dynamics since the strong law
Starting with a constant activity, a small perturbation at timeof large numbers does not suffice any more and, because of
t_;=t,—s*(to) causes a further increase or decrease of théinite-size effects, noise has to be taken into account by the
perturbation at the next spike time & if the factor 1  central limit theorem and variations ther¢@®]. This is nec-
+h'(te)/ »'[s* (X,to)] is greater or smaller than 1. Since for essary for understanding stability criteria of a pool’s activity,
monotonousy(s) it is n'[s*(x,tg)]1>0, this requirement is for the estimation of the number of neurons that compose a
fulfilled, if the synaptic fieldn(x,t) caused by the perturba- pool, or for comparison of the presented pool dynamics with
tion has apositiveslope at timety. Thus an increasing syn- microscopically modeled pools. In this section, we present a
aptic field at the time of spiking caused by the perturbation is‘cooking recipe” for calculating the variance of the pool
a sufficient condition for the instability of the state of con- activity. This variance can be used afterwards for a realistic
stant activity. simulation of finite-size pools.

Similarly, a pool that has already developed an oscillatory  consider a single poot. At time t, there aren(x,t,t*)
activity, say, with narrow activity peaks at times —p(xt,t*)At* neurons that have spiked for the last time
t1,t, ..., will present a contraction of its activity peak gyring the interval {* —At*,t*]. Since all these neurons
and at the same time an increase of the activity maximum, ifee| the same refractory field, the present firing probability

the synaptic field has a positive slope at the activity peakyyring (t— At,t] is the same, and equals
times. This can be seen by rewriting E§9) as

A(X to+At)=|1+ Al X,to—s*(X,tg)

ProHi fires in [t,t+At) due to fieldh;}
A(X,t0+At0):C(to)A(X,t_1+At_l), (90) At

- __t*
with the compression factor Ah(x,0] PA(t—1%). (95
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The probability thatngx,t,t*) of thesen(x,t,t*) neurons

2 — 2
emit a spike during the intervat{— At* t*] is then given o (X't)_tE* XL, (102
by the binomial distributiorithe stochastic variabbe« is the
number of spiking neurons Together withpz = (1—pa)2—2(1—pa) +1 this leads to the
Prob{x;» =nyx,t,t*)} result
_ At
_ [ n(x,t,t*) NGOG TR ) AN(GE TR ) = ng(x 1 t%) U'Z(X,'[)ZE X Y (X4, t*)| 1= ————=p (t—t*)}
_<ns(x,t,t*))p g ’ = mh(x,t)] ™
(96) At?
=AM DAL= D) —————pu(t—t¥)?
with p=At7 h(x,t)] lpa(t—t¥) andg=1-p. = mh(x,t)]
B The mean number of firing neurons of the subgroup of Af2
n(x,t,t*) neurons during the intervat — At,t) can then be =A(X,1)At| 1— - >
calculated as ThxO1]  dh(xt)]
X[N®(x,t) =N@(x,1)], (103

(Xex Y(X,1,1) =H(x,t,t* )p

At whereN®(x,t) =N,(x,t) andN®)(x,t) have been defined in
= T[h(X t)] pA(t—t*)n(X,t,t*)At, (97) Sec. VD.
' We see that, for small discretization time intervals of

i 2
and for the variance of the number of firing neurons we!€NgthAt [and neglecting the terms of the ordext}?], we
obtain have a relative width of the probability distribution function

a2(x 5t =n(x,t,t*)pq o(xt) 1

Xt A DAL

In other words, the signal-to-noise ratio increases for higher

(98) activity. This is important for oscillatory pool activity with
high activity peaks. In this case the effect of the noise in-
To calculate the number of spiking neurons of the entireduced by finite-size pool effects during the high activity

pool, we have to consider the sum of the stochastic variablegeaks is reduced considerably.

from the subgroups characterized by their last firing times For simulations of pools with &nite number of neurons,

t*: we can now calculate the mean activity and the recovery

variables as before, and then assume for the activity a Gauss-

ian probability distribution functior{central limit theorem

with a variance calculated according to the last lines of Eq.

(103.

According to the central limit theorem, the probability distri-

bution function of the stochastic variabkehas a mean that X. DISCUSSION

can be calculated as the sum of the means of the single . . .
stochastic variables;«: The differential equation mod€K3) presents many ad-

vantages over pools of explicitly modeled spiking neurons.
First of all, for large pools the numerical cost is reduced.
<X>(x.t>=2* (Xpe ) (X, 1,1%). (100 That is, the simulations of Fig. 8 were calculated using the
{ same sampling stepsize of 0.5 itike differential equation
This gives system additionally used an adaptive-stepsize integration
method in these 0.5-ms intervaldhe simulation times of

(104

At
=<Xt*>(X,t,t*) 1- mp/_\(t—t*) .

X= 2 Xix . (99)
t*

At the pool of spiking neurons and the differential equation pool

<X>(X,t)=§*: mpA(t—t*)n(x,t,t*)At* model were 1451.5 and 15.5 s, respectively. In our imple-
t ' mentation, the numerical cost of both types of simulations
=A(X,1)At. (101)  gets comparable for pools with less than 70 neurons. It can

also be seen from Fig. 5 that the recovery kernels decay very
Therefore, for a pool of finite size, our calculation of the fast, so that usually only a few recovery variables are needed
activity A(x,t) [using Egs.(26) or (43)] is equivalent to a to describe a pool's activity quantitatively well.
calculation of the mean numbéor theexpectation valueof A second advantage results from the fact that, for simula-
neurons that emit a spike at tinhe tions, the differential equation system with delay requires the
Similarly, the central limit theorem states that the vari-past activity of the system to be remembered only up to a
ance of the probability distribution function of the stochasticpoint in the past specified by the longest delay present in the
variableX is equal to the sum of the variances of the singlesystem. Typical values for the axonal delA$* during the
stochastic variables;«: synaptic transmission are 1-5 ms, and the length of the ab-
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solute refractory periog?*Sis usually< 10 ms. Furthermore, is exact in the case of pools composed of extensively many
there is also the possibility to reduce the pool dynamics to &piking neurons of spike-response or integrate-and-fire type.
differential equation system without delays, which has beerSimulations show good quantitative agreements of the result-
discussed in Secs. V A and V D and which completely elimi-ing pool activity with the activity of pools modeled using
nates the system’s functional dependence upon the past agpiking neurons. It is also shown that analytical results from
tivity. the microscopic models are applicable to the presented
In summary, starting from a stochastic single-neuronmodel. Pools modeled by our dynamics show the capability
threshold model with renewal, we have derived a system o®f developing oscillatory behavior in the parameter regimes
differential equations with or without delays that describe thepredicted by the locking theorem of spike-response neurons.
activity dynamics of a p00| or assemb|y eﬁuiva|entneu- This is shown both in simulations and by presenting a proof
rons. Contrary to previous derivations of differential equa-of the locking theorem for our pool dynamics. Finally, it is
tion pool dynamics from microscopic models, the derivationexplained how the model can account for finite-size effects.
is exact for any dynamical range. This means that the model The key advantage of the model presented in this paper is
can operate equally well in the near-stationary condition andhat it relies upon macroscopice., pool-averaggdparam-
when fast, transient, dynamics is required. For numericagters but retains many biologically relevant neuronal param-
simulations, the real behavior of the pool is approximated byeters that are subject to experimental observation. In sum-
breaking the chain of differential equations at the desirednary, it closes an existing gap between the microscopic and
level. The chain of differential equations allows to move the macroscopic neuronal modeling levels.
gradually from a crude approximation of the real pool dy-

namics (corresponding to a graded-response approach ACKNOWLEDGMENTS
ward a biologically realistic dynamics of a pool of spiking
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APPENDIX A: MAIN NOTATIONAL DEFINITIONS

Notation Definition

Si(t)=2f5(t—tif) Spike train, with spike$ released by neuron
A(X, 1) =Zj o S(t) Activity (spike density of pool x with neurong
A Synaptic axonal delay

(S_AaX)} Synaptic alpha functiofnormalization const,)

(s— APk
a(s)=0(s—A) o ex .

a

hi(t)=2}\‘=1Jijf§d5a(s)8j(t—s) Synaptic field on neuroin coupling weightsl;;

h(x,t)=2,J(x,y) [odsa(s)A(y,t—s) Synaptic field on any neuron of por| pool-to-pool coupling weights(x,y)

Dp(X,t,t*) Probability that a pook neuron that spiked last at tint& did not spike again
until t

p(X,1,t%) =Dp(X,t,t*)A(X,t*) Momentary density of poak neurons that spiked last at tinh&

(E)(x,t) =1 .dt* p(x,t,t*) F(x,1,t*) Functionf averaged over all of pool

[7(h)]?! Firing probability density for neurons that are in the activated state

»20S Length of the absolute refractory period

pa(s) Activation function, probability that a neuron that spiked last-at is in the
activated state

Trefs Po andsg Time constant and parametersf(s)

NO(x)=([1—pa(t—t*)]%) Recovery variables

N, ) =([1—pa(t—t*)1")

NEI(x,t) =([ 1~ pa(t—1t*)]7)

N(x)=N©(x) Total number of pool neurons

N, (x,t) =ND(x,t) Number of inactivated pool neurons

M (x,t) =N (x,t) Last recovery variable
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APPENDIX B: ASSEMBLY DYNAMICS—MAIN RESULTS
1. Dynamics of the synaptic field
Assume thake N in a(s) andh(x,t)=h®(x,t). The dynamics fot e N, 0<I|<k are

d Ci-1 1
N () —|———h(-1) N
G000 =1 =000 = —hO (),

d 1
QD=2 Jy)AY =A%) = —hO(x1).
t y Ta

2. Dynamics of the activity and recovery variables

Assume thap,(s) is monotonous and differentiable excepisaty?®S Without absolute refractory period, the terms with
M(x,t) andpa(¥?® vanish. The dynamics fan<1<o are

N p—— [NO)—NB(x,1)]
' 7 h(x,1)] o
d N(m) =A —f1-11- abs 1m A __ ~abs 1 N(m) _N(m+1)
GO = A0 ~ {1 [1-pa(yPII AL 799 — et [N (x)]

(M
—[NM(x,t)—=M(x,t)]  exppa(s)
ef

Ty

m
—¢ T—f{NW(x,t)—M(x,t>—[N<m“><x,t>—M(x,t)]/po} sigmpa(s)

m .
L T_f[N(erl)(X,t)_M(X,t)] inv pA(S)r

d
FMD =AM —A(X.t= 9.

3. Approximation schemes

Implementation of the dynamics by breaking the chain and approximatidf"of):

Approximation Dynamical regime and assumptions
d For fast, transient dynamics. Without absolute refractory period it is
aN(nH)(X,t)wA(X,t)—A(X,t—7ab§ d/dtNC D (x,t)=0.

NOHFD(x, 1) ~[ 1225 k" D (x) JA(X, 1) For slow dynamicsA(x,t) must be approximately constant during the
past time {—s,t] during which[1—pa(s)]"*! is large. Without an ab-
solute and relative refractory period it {€°*=0 and «<{"*"(x)=0, re-
spectively.
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